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ABSTRACT 
 
 DMDX is a Windows-based program designed primarily for language processing 

experiments.  It uses the features of Pentium class CPUs and the library routines provided 

in DirectX to provide accurate timing and synchronization of visual and audio output. A 

brief overview of the design of the program is provided, together with the results of tests 

of the accuracy of timing. The website for downloading the software is given, but the 

source code is not available. 
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 DMDX is a Win32 program designed to precisely time the presentation of text, 

audio, graphical and video material, and to enable the measurement of reaction times to 

these displays with millisecond accuracy.  It represents an extension of a suite of DOS-

based programs known as DMASTR, developed and tested at Monash University in 

Australia over a period of fifteen years, starting in 1975 by a team including the first 

author, Rod Dickinson, Wayne Murray, and Mike Durham.  Graphics and sound 

capabilities were added in 1989 by Jonathan Forster, and the extension to a Windows 9x 

platform was carried out by Jonathan Forster at the University of Arizona in 1997. 

 The purpose of the present article is (a) to inform the research community about 

the existence of the software, and its capabilities, (b) to provide a non-technical 

explanation of how the software works, and (c) to answer the skepticism expressed in 

some quarters about the possibility of using the Windows operating system in a real-time 

environment (e.g., see Myors, 1999). 

 First, a brief historical note.  The DMASTR suite was originally developed by the 

first author in 1975 for a PDP-11 computer running under RT-11.  It was written in 

assembler code (MACRO) and was an interrupt-driven program which synchronized the 

activity of the display program with the position of the raster in the display monitor, 

thereby enabling accurate measurement of the time interval between when the display 

actually appeared, and when the subject responded to that display.  The RT-11 operating 

system gave the programmer total control over all operations of the computer, so that the 

programmer knew precisely when each display event occurred, and when each response 

was made by the subject.  With the advent of far cheaper IBM-compatible PCs, the 
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switch was made in 1983 to a DOS-based program (DM) written in C with no loss of 

control over timing.  This version of DMASTR was still purely text-based.  In 1989, the 

second author extended the system to include graphical displays and sound using the 

Borland Turbographics C library.  However, this program (DMTG) was restricted to a 

particular graphics format (not widely supported), a particular speech editing system 

(BLISS, developed by J.Mertus at Brown University), and as a consequence, it was also 

limited to a narrow range of sound cards for which BLISS drivers had been written. 

 As MacInnes and Taylor (2001) point out, attempting to stay with DOS means 

that researchers are restricted to outdated hardware and software, a problem that becomes 

more acute with each passing year. As the supply of sound cards suitable for DMTG 

began to dwindle (suppliers going out of business, or completely changing the design of 

the card), it became clear that any new application having a life span of more than a year 

or two would have to be based on the de facto Windows standard.  The idea was that if a 

piece of hardware worked with Windows, it would also work with DMASTR.  In that 

way, we could keep abreast of new technology without having to write new device 

drivers for every new piece of hardware to come on the market.  That was the goal that 

drove the development of DMDX.  In addition, there was the obvious benefit of greatly 

enhanced graphics.  Further, the fact that DMDX was a Windows program meant that it 

used accepted formats for fonts, image files, and sound files, which in turn gave the user 

a wide range of support tools. 

 DMDX is a hybrid name.  The DM in the name indicates its lineage as part of the 

DMASTR system.  The DX refers to DirectX, a set of DLLs (dynamic link library 

routines) that gives the Windows programmer access to the actual hardware -- a  
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development driven largely by the need to provide a fast-action, dynamic gaming 

experience.  When DMDX requires something to be displayed, it issues a command to 

DirectX, not Windows. 

 DMDX runs on Win 32 machines only (this rules out Windows 3.1), and DirectX 

should be available as part of the system. 1 Details of the earlier DOS programs (DM and 

DMTG) and the current version of DMDX can be found at the DMASTR website:  

http://www.u.arizona.edu/~kforster/dmastr/dmastr.htm. Documentation for DirectX can 

be obtained by downloading the DirectX Development Kit from  

http://www.microsoft.com/directx/download.asp.  However, users of DMDX do not 

require an understanding of DirectX. 

 

Timing Problems with a Multi-tasking Operating System. 

 The problem with asking Windows to do something at a specified time is that 

Windows is a multi-tasking environment.  There may be other applications running that 

have a higher priority, and hence the operating system will not always carry out an 

operation whenever it is requested.  Even if there are no other applications running 

(something that we insist on for accurate timing in DMDX), the Windows kernel may 

still interrupt the execution of DMDX to determine whether any other task needs to be 

serviced. These tasks may include things like networking, disk maintenance, etc.  Also, 

DMDX consists of a number of sub-programs (“threads”) that carry out different tasks.  

One thread may be involved in loading display material into the video RAM, another 

may be involved in playing a sound file, while a third is monitoring the position of the 

raster on the video monitor.  All of these processes may be operating at the same time. 

http://www.microsoft.com/directx/download.asp
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 The most obvious situation where this presents a problem is in the 

synchronization of the display routines with the video raster.  This is critical for accurate 

measurement of reaction time (RT), since the software can only measure the RT from the 

time that the appropriate page in the video RAM is activated, not when the information in 

that page actually becomes visible on the monitor screen. If new material is loaded into a 

page regardless of the position of the raster, then it is possible that this material will not 

be displayed until the next refresh cycle. To achieve the required synchronization, the 

register that indicates the status of the raster has to be monitored constantly.  The signal 

indicating that a refresh cycle has been completed is very brief, and is easily missed if the 

program diverts its attention from this task, even momentarily.  To avoid this, it would be 

necessary to constantly monitor the raster position, which would require a very tight loop, 

so tight that the program would be unable to carry out any other function. Even so, the 

Windows kernel regularly interrupts the current application for a period longer than the 

refresh signal, so it is inevitable that some refresh signals will be missed. To get around 

this problem, DMDX is provided with information about the refresh cycle time by a sister 

program, TimeDX. This program times the refresh cycle and stores the value in the 

registry, so that DMDX can later retrieve this information. If, for example, the refresh 

cycle is specified as 16.666 ms, then DMDX knows that it can ignore the raster position 

if the time since the last refresh cycle is less than, say, 13 ms. So the thread that is 

responsible for detecting the retrace signal can be put to sleep for 13 ms (allowing other 

threads to operate), but once 13 ms has elapsed since the last refresh, the retrace thread 

wakes up, and resumes the task of constant monitoring until the refresh signal is detected. 
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 But a problem arises if some other process with a higher priority than the retrace 

thread is required during this critical phase.  If such an interrupt disables the thread just as 

the refresh signal is about to occur, then the refresh signal will be missed.  This would 

mean that DMDX would lose track of 16.6 ms of display time, and the current stimulus 

would be displayed for at least one extra refresh cycle.  For many applications, this might 

not matter very much, but for time-critical procedures such as priming paradigms with 

very short prime durations, this error might be intolerable.  Of course, the problem could 

be much worse, since if the probability of missing a refresh signal is reasonably high, 

then DMDX could lose track of multiple refresh cycles. 

 The second situation in which a timing problem could arise is when the subject 

makes a response.  DMDX polls the state of the input devices every millisecond, and if a 

response is indicated, the time is recorded. If the thread that is responsible for carrying 

out this task is momentarily pre-empted, the time will not be read until that thread regains 

control, and the reaction time will be overestimated.   

 

Solutions to the Timing Problems. 

  Display timing errors.  The solution to the problem of timing the display is 

provided by the High-Performance Timer, a piece of hardware on all Pentium-class 

mother boards.  This device keeps track of elapsed time down to sub-microsecond 

accuracy (1.19 MHz), and operates autonomously, regardless of what application is 

currently running.  If DMDX fails to detect a refresh signal,  DMDX will discover the 

error when it notes that, according to the high-performance timer, more than 16.666 ms 
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(or whatever the refresh rate actually is) has elapsed since the last refresh.  DMDX then 

simply assumes that a refresh must have occurred, and adjusts its counter accordingly. 

 This process could be repeated indefinitely.  For example, if DMDX has been told 

that the display must be changed after 200 ticks (a tick is the time taken for one refresh 

cycle), it could theoretically ignore the raster for 199 ticks, using the high performance 

timer to keep track of the elapsed time.  However, since the clock speed for the timer and 

the raster might differ slightly, a slight drift could occur over such a long time period. To 

avoid this problem, DMDX re-synchronizes itself with the raster whenever possible, 

reducing drift to negligible amounts. 

 This procedure copes with all errors except one, and that is when an error occurs 

on the final refresh cycle.  For example, suppose that a target word is to be displayed for 

three ticks, but on the third cycle the refresh signal is missed.  This means that the display 

of this stimulus will not be terminated until the next refresh cycle, which means that the 

duration of the stimulus will be one tick longer than it should have been.   

 There is no way to recover from such an error.  However, in our experience, it is 

extremely unlikely,  given adequate video card drivers.  The reason is that DMDX queues 

display buffers (up to 24 frames), so that the material for the next frame is already loaded 

into the appropriate video page.  All that is needed for correct operation is that a request 

to switch to the next video page be issued at any point during the current refresh cycle.  

The switch then takes place automatically when the refresh cycle is completed. In order 

for an error of this type to occur, the display thread would have to be pre-empted for an 

entire refresh cycle.  Given a reasonably fast CPU, this is not going to happen very often. 
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On the fairly slow test machines used in our laboratory (166 MHz Pentium MMXs), the 

probability of such an error appears to be very small.   

 The probability of an error occurring can be determined by running the tests 

provided in TimeDX.  However, knowing that a display timing error is likely to be rare is 

reassuring, but one might still want to know whether an error occurred during an actual 

experiment, and more importantly, when it occurred.   This information is provided to the 

user in the output file.  If a given frame is displayed later than it should have been, the 

item number of the trial, and the frame number are indicated, along with the size of the 

error. So even if errors do occur, the user can discard the data from those trials.  In our 

experience, such errors are extremely rare when DMDX is run as the only application. 

We have scanned the output from our laboratory machines for more than 100,000 time-

critical trials involving masked priming (where the precise duration of the prime is 

absolutely critical), and have found only two examples where a frame was displayed 

longer than scheduled. In one case, the error was in a non-critical frame, and in the other, 

the critical frame was displayed for one tick longer than specified.  However, on an office 

desktop with multiple applications loaded (e.g., anti-virus software, alarms, calendars, 

backups, email, etc.), display errors can be quite common. 

 The major cause of display errors appears to be the quality of the video drivers 

supplied with the graphics card, rather than the CPU speed.  Very often, display errors 

can be corrected simply by downloading the latest drivers.  However, with a moderately 

fast CPU (500 MHz), one can virtually guarantee error-free displays. 
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 Response timing errors.  As mentioned above, measurements of RT may be 

subject to similar problems.  The nature of the problem will depend on the input device.  

DMDX supports a parallel I/O card (PIO12), a  joystick or gamepad (connected via the 

game port or a USB port), a mouse, a keyboard or any other input device that has DirectX 

drivers.  

DMDX polls the status of the PIO12 and the joystick every millisecond, but this 

operation depends on the multi-media timer call-back originating from the Windows 

kernel.  DMDX requests the kernel to call it every millisecond, but in actual fact, the 

interval between successive call-backs varies, depending on what other tasks the kernel 

was attending to.2  So if the call-back immediately following the occurrence of the 

response is delayed, the RT will be overestimated.  The severity of this error can be 

estimated by using the test routines provided in TimeDX (see below). 

For the mouse and keyboard input, the nature of the problem is slightly different.  

The occurrence of mouse clicks and key presses is signaled to DMDX by DirectX , and 

hence is subject to the variation that introduces. 

 The only real solution to this problem would be to install independent hardware 

capable of detecting when a stimulus appears on the display screen, and measuring 

accurately the time until a response occurs. Such a system has in fact been used by 

McKinney, MacCormac and Welsh-Bohmer (1999).  However, this requires the user to 

purchase additional hardware for each experimental station, and the cost-benefit ratio of 

this solution might be high.  For example, an average error of ±1.5 ms can probably be 

safely ignored in most RT experiments. 
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How DMDX operates with DirectX. 

The input to DMDX is an .rtf file (rich text file), generated by applications such 

as Word, or WordPad. This is referred to as the item file or script, and specifies what is to 

be displayed, and how it is to be displayed (see examples below). The first line of this file 

(termed the Parameter line) specifies such things as which input devices are to be used, 

the video display mode to be used, the default exposure time for a frame, etc.  

Preliminary pre-processing.   Initially, DMDX parses the item file taking note of 

all RTF control codes. Next, if the item file calls for scrambling of items, the scrambling 

routines produce another file which contains a pseudo-random item sequence. Following 

these preliminary operations, the various processes that make up DMDX proper are 

begun.  First DirectX is instructed to switch the screen to whatever display mode has 

been requested in the item file. That mode must have been set up with TimeDX 

beforehand, since DMDX reads the value of the refresh rate from the registry that 

TimeDX puts there. It also requests that as many screen buffers as can be contained in 

video memory be created. These are called DirectDraw Surfaces. Beside the primary 

surface that is always displayed, there can be a large number of “back” surfaces that 

DMDX uses for buffering (up to 24 on an 8M video card at 640x480 8 bits per pixel). 

Following this, the millisecond callback from the Windows kernel is initiated.  Next, a 

thread is created to keep track of the retrace. A thread is another task running in parallel 

with the original program (itself just another thread). The retrace thread spends most of 

the time sleeping (i.e., allowing other threads to execute). Once each retrace period it 

wakes up and waits for a number of milliseconds until it either finds the retrace or it 

decides that it has missed it, in either event counters are updated and DMDX then  
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decides what should happen next. As indicated earlier, in most cases, missing a retrace is 

not a problem, so as long as DMDX gets control back before the next retrace. 

A thread is also created for each input device specified in the item file (the default 

being the keyboard). Threads for keyboards and mice and any other interrupt driven 

devices simply wait for input data, whereas all other polled devices have threads that are 

woken up periodically by the millisecond callback to check if a key is being pressed.  

Another thread can exist to handle requests to play sound files, however this thread is not 

created until DMDX finds a request to play a sound. At that time the sound system as a 

whole is initiated and the sound thread created, which can take quite a number of 

milliseconds. If DMDX is going to be used primarily to present audio stimuli the priority 

of the audio thread can be increased by the user. 

Per-item processing.  An item is presented when the subject requests it, either by 

pressing a key, or pressing a footpedal, etc. Prior to the request for an item, DMDX 

performs all disk related tasks. The experimenter can specify the delay between the 

request and the first frame, but care must be taken to ensure that sufficient time is 

allowed for these tasks to be completed (DMDX provides an output indicating the time 

taken to prepare items).  Disk related tasks include writing diagnostics to disk, writing 

result files to disk, reading the item to be displayed (although this is likely to have been 

buffered in memory, as DMDX uses file mapping), and reading the bitmaps and sound 

files used in the item and storing them in the appropriate buffers. If a sound file is used 

for the first time this is when the sound system is initiated. 

 Once the request has been received, DMDX prepares each individual frame in a 

separate DirectDraw surface (stored in main memory, rather than screen memory).  It 
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then ascertains which screen surface that frame will be displayed in, and what 

information needs to be preserved or erased from the previous display. Having done that 

it creates a surface  just big enough to contain the region that will change on the screen 

surface and copies the corresponding region of the memory surface to this new temporary 

surface.   Once everything is drawn, DMDX schedules the frames for display and adds 

them to the display queue.  This consists of a queue of frames, along with the time at 

which they must be displayed. 

Per-frame processing.  DMDX's main thread watches the display queue to see if 

any of the screen surfaces become empty (or are already empty at the item's 

commencement) and moves the display queue surfaces onto the screen surfaces one 

segment at a time, in order to avoid locking out all other threads for a substantial period 

of time.    When a video retrace is detected, the retrace thread examines the display queue 

to determine whether the next screen surface should be activated (“flipped”), when 

sounds should be commenced, when output bytes should be output, when the timing of 

the response should begin, and so forth. The timing of these requests is calculated ahead 

of time and is stored on another queue which is examined by the millisecond callback 

thread. The operations controlled in this way include initiation of a sound sequence, 

output of information to a parallel I/O card, polling of input devices, calculation of RTs, 

etc.  

  

Accuracy of Timing 

In order to determine just how serious the timing errors might be, we have 

extensively tested the accuracy of DMDX with various input devices, and these data are 
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reported in the next sections. Readers can judge for themselves whether the accuracy is 

sufficiently high to meet their needs. 

 Video synchronization. It is one thing to be told that DMDX is synchronized with 

the video raster, but another to be able to see that it is.  Users can easily verify this for 

themselves by constructing a series of frames, each consisting of a column of Xs 

displayed one column to the right of the preceding frame.  Each frame is displayed for 

some brief interval.  If there is no synchronization, then occasionally the display will be 

incomplete.  For example, the first two columns might be complete, but only the first half 

of the third column is displayed, and the rest of the display is blank.  With repeated 

viewing of the same sequence, it is not difficult to determine whether each column gets 

displayed. With perfect synchronization, this should always be the case. 

Accuracy of Refresh Rate Timing.  TimeDX provides such a test.  The test swaps 

the contents of the video page, so that the display alternates between a red background 

and a blue background.  The swap is made regardless of the position of the raster (some 

versions of DirectX, and some video card drivers do not permit such an operation).  The 

timing of these swaps is controlled by the high-performance timer, the interval between 

the swaps being exactly half the retrace interval (i.e., at a rate twice that of the refresh 

rate).  If  TimeDX is using the correct value for the refresh rate, then there will be perfect 

synchronization between the time at which the swap occurred and the position of the 

raster.  The display will consist of two segments -- the top segment would be red, and the 

bottom would be blue, and the border between them would be stationary, with the 

exception of a few flickers as TimeDX gets preempted by other processes.   If the buffers 

are swapped at a slightly faster rate than the refresh rate, the border will scroll slowly up 
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the screen; if the buffers are swapped at a slower rate, the border will scroll down the 

screen. If the border is scrolling slowly, the user can adjust the swap rate until the border 

becomes stationary.  This gives a new, more accurate measure of the refresh rate, which 

can then be stored in the registry. 

 Accuracy of Display Timing.  In language processing tasks such as RSVP 

(Forster, 1970), a sentence is displayed one word at a time at a rapid rate.  If DMDX 

cannot move the display queue surfaces onto the screen surfaces rapidly enough, a 

display error occurs, and one or more of the frames will be displayed for a longer period 

of time than specified (most likely, for one screen refresh), which would distort 

performance on that item.  To assess DMDX’s  performance under these conditions, we 

selected an older Pentium (166 MHz) with 64 MB of RAM.and a 4 MB S3 Virge video 

card, running under Windows 98.  A phototransistor was placed at the top left corner of 

the screen.  A 10-word sequence was then displayed in white letters on a black 

background at the middle of the screen, each word being displayed for 2 refresh cycles 

(for this setup, 27.46 ms). The video mode was 640x480 with 8 bpp (bits per pixel). As 

the first word was displayed, the RT clock was turned on. At the conclusion of the 

sequence, a white mask was briefly displayed, which activated the phototransistor, which 

in turn triggered a response to the display, using the parallel I/O interface.  If there were 

no display errors, and each frame was displayed for exactly the number of refresh cycles  

specified by the item script, and  the determination of the refresh cycle time by TimeDX 

was accurate, and the calculation of the RT  functioned perfectly, then the observed RT 

should be 10 x 27.46 = 274.6 ms, plus the time required for the phototransistor to trigger 

a response.  If a display error occurred, and a frame was displayed for 3 refresh cycles 
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rather than 2, then the RT would be longer by a factor of 13.73 ms (one refresh cycle).  If 

more than one display error occurred, then the RT would be increased still further.  

However, over 100 tests, no display errors were reported by DMDX. The mean RT was 

278.56 ms with a SD of 0.53 ms (the range being 277.1 - 279.4 ms). This amounts to an 

error of less than 4 ms, most of which is due to the time taken for the phototransistor to 

stop the clock, with the remainder being due to an error in registering precisely when the 

response occurred (see next section).    Given the fairly demanding nature of the RSVP 

display requirements, this performance seems entirely adequate. 

 In the previous test, the video mode allowed DMDX to use 12 buffers, which 

means that entire sequence could be assembled and buffered prior to the display.  

Switching to a 640x480 display with 16 bpp instead of 8 bpp (double the memory 

requirements) restricted DMDX to only 5 buffers 3, meaning that the entire sequence 

could not be assembled in advance.  However, under these conditions, once again no 

critical display errors were reported, and performance was virtually unchanged, with a 

mean RT of 278.99 ms with a SD of 0.53 ms.  

Response timing.  Errors in response timing can arise from several sources, such 

as the physical properties of the input device itself (e.g., switch closure time), or the 

nature of the interface (e.g., serial vs. parallel input).    As far as the software is 

concerned, the main source of error is a delay in the millisecond callback from the 

Windows kernel.  If  the hardware has registered that a response has occurred, but the 

millisecond callback to DMDX has been delayed, the time at which the response 

occurred will be recorded incorrectly. To test the accuracy of response timing, we 

constructed test hardware that produced a electronic switch closure 4 every 524.3ms (a 
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2.000MHz crystal divided by 2 to the 20th power).  This interval was chosen to 

approximate the length of the average lexical decision time, which is the most commonly 

used task in our laboratory.  One useful feature of DMDX is that it includes a number of 

different modes of operation, designed to assist the user in evaluating the performance of 

their own installation. One of these test modes (test mode 8) simply records the time 

between successive response signals.  

The machine tested was an AMD-K6 300 with a Riva 128 4M video card and 

64MB of RAM, running under Windows 98. Table 1 shows the frequency distributions of 

timed inter-response intervals obtained with various input devices under different 

conditions, using Test Mode 8.  The first four tests listed in Table 1 were carried out with 

the recommended input device, namely a parallel I/O card (a MetraByte PIO12).  

In every case, the mean inter-response time was 524.3 ms.  However, this is 

misleading, since any delayed call-back is issued as soon as the kernel regains control.  

So, if one call-back is delayed by 1.5 ms, the inter-response time will be overestimated by 

1.5 ms, but the next will be underestimated by exactly the same amount.  The more 

important values are the standard deviations.  For the PIO12 input device tested without 

any simultaneous activity, the SD was 0.84 ms. In practical terms, this means that the 

measurement error was less than 1 ms on 75% of the trials, and on the remainder was 

never greater than 2 ms.  These figures were obtained using Version 1 of DMDX.  A 

similar test carried out on the improved Version 2 of DMDX, using a Celeron 400 multi-

monitor system with a Riva TNT 16M primary display (for the experimenter) and an S3 

Virge GX 4M secondary display (for the subject), produced an SD of 0.77 ms.  Neither of 
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the machines used for these tests had a CPU speed (300 and 400 MHz) that could be 

described as fast by today’s standards.  

 Other tests were carried out under more stringent conditions.  Table 1 shows the 

results when the same test was carried out while DMDX was playing a 11025 KHz 16 bit 

wave file lasting approximately 3 secs.  The SD in this situation was 0.87 ms, virtually 

the same as without the sound file.  This indicates that the demands imposed by playing a 

sound file have very little impact on accuracy of response timing. 

 A more stringent test was to measure accuracy under unusually severe conditions.  

Normally, tachistoscopic experiments involve a brief display of a single image, followed 

by some type of mask, and then nothing. A more demanding situation is one in which an 

extended series of images must be displayed in rapid succession, e.g., a different display 

every 100 ms.   This test produced an increase in the variability (SD = 1.01 ms).  

However, the maximum error never exceeded 3 ms.  

 Since the machines running DMDX are likely to be connected to a local Ethernet  

network, one might ask whether the amount of traffic on the network is likely to interfere 

with the measurement of RTs.  This was tested with an ISA 3Com Etherlink III card by 

transferring a 500 MB file between two other computers over the network, producing a 

constant  5Mbps load while the timing test was carried out. There was again no detectable 

effect (SD = 0.86 ms). It should be noted that 5Mbps is an extreme amount of traffic. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Table 1 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 
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 Other input devices were also tested.  For example, a Microsoft Serial Mouse 

2.0A (with the ball removed) produced an SD of only 0.55 ms. The keyboard proved to 

be far more variable, with the SD jumping to 5.15 ms.  The maximum error was a huge 

16 ms,  but this occurred only once out of 571 trials.  However,  it should be noted that 

this variability has nothing to do with the software or the operating system, but depends 

on the circuitry involved in the particular keyboard.  Some keyboards poll the keys at a 

faster rate than others, and may well produce better results. Hence the results listed here 

must be treated as illustrative only. 

Measuring variability in absolute response times. Another method of testing 

involved triggering a MetraByte PIO12 input card with a phototransistor focused on the 

monitor display.  In this test, the response occurs immediately after the stimulus becomes 

visible (to the phototransistor). Any variation in the observed latency must therefore 

reflect variation in the call-back routines from the Windows kernel.  Over 100 trials, this 

procedure produced a standard deviation of 0.29ms. This means that 95% of the 

observations fell within an interval of 1.16 ms, which is almost exactly millisecond 

accuracy.  

The SD gives a measure of variability, but says nothing about the constant error.  

Does DMDX overestimate the true RT, and if so by how much?  There are two points to 

make here.  First, the absolute RT is rarely the object of interest.  Usually, we are 

interested in differences across conditions, and in this case, the constant error is 

irrelevant.  Second, it is difficult to get a measure of the “true” RT, i.e., one that is 

independent of the physical equipment used to measure it.  For example, we can focus a 

photocell on the screen (as in the previous example) which fires a 12V solenoid as soon 
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as the display is detected, which in turn depresses a switch of some kind. Ideally, the 

observed RT would be close to zero.  However, with the solenoid depressing a PIO12 

microswitch, the range of RTs ranged from 18-20 ms.  But without knowing how long it 

takes the photocell or the solenoid to respond, or how long it takes for the key to be 

pushed it’s full travel distance, we cannot really interpret this figure.  All we know is that 

the constant error cannot be larger than this figure, but is likely to be very much smaller.  

However, we can at least rank input devices according to the size of this error.  The 

values obtained are shown in Table 2. 

The clear indication from the data in Table 2 is that one needs to be very careful 

about using a keyboard, since the variability obviously varies considerably from one 

device to another.  On the other hand, the data for the particular MS Serial mouse that we 

tested is surprisingly good.  Although it might overestimate RTs, the variability is quite 

small, and does not vary as a function of whether the ball is removed or not.  However, it 

should be stressed that this may be true of only this particular mouse. There may be 

considerable variation in performance across different manufacturers, or even within a 

given model.  Finally, by far the best performance is produced by the PIO card, although 

a conventional joystick or gamepad comes very close. 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

Table 2 about here 

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 

  
Variation in Call-back Latencies across Operating Systems.  As mentioned 

earlier, one source of error in response timing is the fact that the Windows kernel does 

not always activate DMDX every millisecond. TimeDX provides a quick method of 
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measuring variation in the call-back latency.  This is not a perfect indicator of the SD 

while DMDX is executing, since TimeDX is not playing audio files, or polling input 

devices, or keeping track of the position of the raster, although it is involved in fairly 

intensive screen output.  Nevertheless it provides a relative measure that is suitable for 

comparing different CPUs, and different operating systems.  Under Windows 98, the test 

machines used to generate the data in Table 1 produced a call-back SD of 0.29 ms. Under 

Windows 2000, this variability was reduced to only 0.07 ms.  Under Windows ME and 

XP, the SD was .08 ms.  It is worth noting that initially, the disadvantage of Windows 

2000 and XP was that the PIO card could not be used as an input device (or as an output 

device), because no drivers for this device were available.  However, this is no longer the 

case.  

 Conclusion.  Considering the amount of variation in the time required for even 

simple cognitive operations, where SDs for a given individual in excess of 100 ms are not 

uncommon, it appears that the amount of noise introduced by timing errors in DMDX are 

relatively minor.  However, it must be stressed that the figures reported in Tables 1 and 2 

are valid only for the particular configurations used in our laboratory. Faster CPUs and 

more efficient graphics cards will reduce the variability still further. 

 

Why is a Win32 system thought to be inadequate? 

 If timing problems are so effectively coped with, one might ask why 

commentators such as Myors (1999) assert that Windows is totally inadequate for precise 

timing.  For example, Myors used the keyboard autorepeat as a signal generator rather 

than an external response device as we have, and ran a program written to time the 
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interval between received keystrokes.  When this program was running in a DOS window 

under Windows 95, it was incapable of detecting the video retrace, and yielded a 

distribution of times with a SD of 16.0 ms, whereas the same program running in MS- 

DOS mode (when Windows is not active) produced a SD of only 0.06 ms.  Clearly, 

Myors’ test yields an unacceptably high SD for the Windows test, whereas our tests do 

not.5 

Why should there be such a difference?  The answer is that the example Myors 

uses is a program written for DOS.  He finds that this is far more accurate when it is run 

under DOS compared with Windows. What it should have been compared with is a 

comparable program written for Windows.  DMDX is a program written specifically to 

take advantage of the functionality offered by Win32, whereas Myors’ program ignores 

it.  

 

The Capabilities of DMDX. 

 System Requirements. To run at all, DMDX requires a Pentium PC running 

Windows 95, 98, 98SE, ME, XP, or Windows 2000, with at least DirectX 5 installed, 

with DirectX 7 providing some enhanced timing (DirectX versions beyond 3 are not 

permitted with Windows NT).  A CPU speed of 500 MHz is ideal, but not essential, since 

the lab machines at the University of Arizona  run perfectly well at 166 MHz.  To run 

effectively, 64 MB of RAM are sufficient, with a 4 MB video card and a sound card. It 

should be noted that a parallel I/O card can now be used with Windows 2000 or XP, 

which is essential for the coordination of the operation of DMDX with external devices 

such as fMRI scanners, etc. 
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 Operating Modes.  DMDX runs in several different modes.  The standard mode is 

a simple reaction time situation, in which the subject makes a binary classification of the 

input.  There are three inputs -- a positive response, a negative response, and a request.  

The request initiates a new trial, and is used for self-paced experiments.  These inputs can 

be interfaced with a parallel I/O card, a mouse, a game pad (or joystick), or the keyboard 

(with the concomitant cost to RT accuracy).   

In addition, there is a mode in which the subject can make multiple responses 

over time.  DMDX records the nature of each response, and the time at which it occurred.  

This mode is normally used with keyboard input, which makes it possible to record 

ratings, or typed responses.  Typed responses can be echoed to the display screen. 

If a parallel I/O card is installed, DMDX can also be programmed to output 

signals to control external devices, or to provide timing signals.  

DMDX supports a Dual Monitor Display mode, in which the experimenter. views 

a separate display from the subject .  Single monitor mode is also supported.  In addition, 

it is possible to track the course of an experiment from a remote location, since  DMDX 

can be programmed to send information about each trial as it occurs to a user-specified 

internet address. 

 

DMDX also provides a digital VOX mode, designed for recording vocal onset 

latencies. This eliminates the need for an external device. Users can specify the threshold 

intensity required to trigger the VOX, and have the option of obtaining a wav file output 

for each trial, indicating the point at which the VOX was triggered, so that after the 
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testing session, the experimenter can review the appropriateness of the trigger point, and 

adjust the measured RT accordingly. 

Types of Display.  DMDX supports standard Windows graphics, which includes 

Windows fonts, .bmp and .jpg files.  Sound files (.wav files) can be played 

simultaneously with graphical displays, allowing for cross-modal experiments.  

Considerable effort has gone into the procedure for synchronizing visual probes with 

audio files.  Support for the display of digital video files (.mpg, .mov or .avi) is also 

provided. Users can measure RTs to critical frames within these files, although the timing 

here is more subject to variability. 

Experimental Scripts.  The experiment is controlled by a script written in rich text 

format (.rtf) using Microsoft Word or WordPad.  The first line of the script sets a number 

of parameters, such as the default frame duration, whether the items are self-paced, how 

the order of the items should be scrambled, etc. Then follow the specifications for each 

item  A typical item in a lexical decision experiment testing for semantic priming might 

look like this: 

 

+001  "+"  %70 /  "doctor"  %35 / *  "NURSE" %70 /  ; 

 

The plus sign at the beginning of the item indicates that the correct response is a positive 

(Yes) response (i.e., the target "NURSE" is a word).  Everything between quotation 

marks is displayed on the screen, by default centered both vertically and horizontally.  

The display sequence is divided into a series of frames, and the "/" symbol functions as a 

frame delimiter. In this example,  when a request for a display is received, the first frame 
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displaying a fixation point ("+") is presented.  The duration of this frame is determined by 

the frame timer "%70", which specifies that the next frame onset should be delayed by 70 

video ticks.  For a monitor refreshing at 70 hz, this would be 1000 ms.  The next frame 

presents the word "doctor" for 35 ticks, and this is then followed by the frame presenting 

the target "NURSE".  Simultaneous with this frame onset, the reaction time clock is 

turned on (indicated by the symbol "*").  After 70 ticks, this frame is replaced by a blank 

frame.  The end of the item is signaled by the symbol ";". 

 The expression "%70" is one example of a "switch", as is the clock-on symbol 

"*".  There are over 170 switches that can be embedded in a frame, each of which 

controls some aspect of the display.  For example, the switch "!" means that the current 

frame does not replace the previous frame, but is superimposed on it.  Many of these 

switches are indicated by a single symbol (these guarantee compatibility with scripts 

written for the older DOS programs), others are enclosed in angle brackets.  For example, 

the switch <line 1> means that the text should be displayed one line below the default 

display line (the center of the screen).  The switch <nfb> specifies that there should be no 

feedback (the default condition is that after each response, a message is displayed 

informing the subject of the correctness of the response, and the reaction time).  If the 

material to be displayed is a graphics file, the switch <gr> is specified, and the material in 

quotation marks becomes the name of the file to be displayed.  Switches in the form of x-

y coordinates are provided to position either text or graphics at any location on the screen. 

 Counters are provided, so that things such as the number of errors, or the total 

number of trials completed can be tracked, and integer arithmetic is provided, enabling 

the calculation of the mean RT, or the current error rate.  Conditional branching is 
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possible, so that the item sequence can be controlled by things such as the subject's 

response to a question, or by the contents of a counter. Provision is also made for various 

methods of scrambling the order of items individually for each testing session. 

The general aim has been to provide a scripting system that specifies relatively 

low-level operations in order to maximize generality.  For some unusual applications, this 

sometimes leads to a fairly cumbersome script, with a special set of switches needing to 

be included in every item.  This is easily coped with using find and replace commands in 

Word, although the resulting script may be difficult to read.  One example of such an 

application involves the ability of DMDX to present selected items a second time if they 

elicited an error the first time.  The method involves defining a counter for each item as it 

is presented, and then incrementing it if the response was correct: 

 

+100 <set c100 = 0> "HOUSE" * < IncrementIfCorrect 100>;  

-101 <set c101 = 0> "FLIDGE" * < IncrementIfCorrect 100>; 

 

This creates a counter labeled "100" and sets it to zero.  The value of this counter is 

incremented if the current response (i.e., the response to the item “HOUSE”) is correct .  

Subsequently, every item is scheduled for display again, but preceded by an instruction to 

branch if the appropriate counter had a positive value: 
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<SkipDisplay> 0 <BranchIf 0, c100 .gt. 0>;  

+1001 "HOUSE" *; 

<SkipDisplay> 0 <BranchIf 0, c101 .gt. 0>; 

-1011 “FLIDGE” *; 

etc. 

 

This first statement causes a branch to the next item numbered "0" if counter 100 is 

positive (i.e., the next branch statement).  Otherwise control passes to item 1001, where 

"HOUSE" is presented again with a different item number.  The <SkipDisplay> switch at 

the beginning of each branch statement informs DMDX that this item does not involve 

any display, and no response is expected from the subject. 

Construction of scripts such as this is made easier using a spreadsheet such as 

Excel.  Using a function such as CONCATENATE, the above commands can be 

automatically generated from just the item number and the test item itself.  An example 

of an Excel scripting file is available as part of a package of useful DMDX utilities from 

the DMDX download site. 

In addition, we have compiled a set of example scripts for standard experimental 

paradigms such as lexical decision, naming, self-paced reading, picture naming, word 

identification, masked priming, fMRI scanning, etc. This also can be accessed from the 

DMDX homepage.   

An online manual for the construction of scripts for the DOS-based DMTG  

system can be found at the following address:  

http://www.u.arizona.edu/~kforster/dmastr/dm_man0.htm .   
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Since DMDX is an extension of DMTG, many of the basic features of the DMDX scripts 

are outlined here.  Tutorials on the use of DMDX can also be found on the DMDX 

homepage. 

User Assistance.  On-line help files for DMDX and TimeDX are included in the 

download package, and these can also be accessed via the web at 

http://psy1.psych.arizona.edu/~jforster/dmdx/help/dmdxhdmdx.htm and 

http://psy1.psych.arizona.edu/~jforster/dmdx/help/timedxhtimedxhelp.htm. In addition, 

there is a DMDX user list serv where users can post queries. Currently, there are about 

150 users located in countries such as Australia, U.K., U.S.A., Israel, France, Spain, 

Germany, China, Taiwan, Japan, and Kazakhstan. 

 

How to Obtain DMDX. 

 The complete DMDX package can be downloaded from the home page for 

DMDX, which can be accessed by following the links from the DMASTR web site: 

http://www.u.arizona.edu/~kforster/dmastr/dmastr.htm.  This package includes the 

program TimeDX, which is an essential partner for DMDX, and which must be run to 

select the desired screen resolution and to time the refresh rate.  Also included are 

examples of scripts that execute various tasks. 

http://psy1.psych.arizona.edu/~jforster/dmdx/help/dmdxhdmdx.htm
http://psy1.psych.arizona.edu/~jforster/dmdx/help/timedxhtimedxhelp.htm
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FOOTNOTES 

 

1.  On some early Windows 95 systems, DirectX was not included.  DirectX can be 

downloaded from the DMASTR site or from Microsoft. 

2.  Actually, on some machines there are always 998 call-backs per second, but they do 

not arrive at equal intervals of time. 

3.  This limit depends on the memory of the video card. 

4.  Myors (1999) used a similar procedure involving the autorepeat function of the 

keyboard.  This is not possible with DirectX, since autorepeat codes are filtered out. 

5.  The SD that Myors obtains for the DOS test is nevertheless well below the value of 

0.84 reported for DMDX in Table 1.  This is perhaps not surprising, since Myors' 

program was extremely simple, and was designed to do nothing other than time the video 

retrace, or the interval between keystrokes (but not both at the same time).  In contrast, 

DMDX was tested while it was carrying out both of these tasks simultaneously, and in 

addition, accessing the hard drive, and assembling the material to be displayed, not to 

mention monitoring network traffic.  It should also be noted that more recent tests 

running DMDX under Windows ME or XP on newer hardware produce SDs that are very 

close to Myors’ DOS values. 
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Table 1. 

Frequency distributions of inter-response times (ms) for DMDX operating with different 

input devices under varying load conditions (running on an AMD-K6 300 MHz machine 

under Windows 98). 

 
 

 
 

Input device 
 

 
Observed time interval (ms) 

 
N 

 
SD 

 508-
521 
 

 
522 

 
523 

 
524 

 
525 

 
526 

 
527 

 
530 

 
 

 
 

PIO12  (no load) 
 

0 
 

0 
 

87 
 

200 
 

239 
 

46 
 

0 
 

0 
 

572 
 

0.84 
 

PIO12 with sound 
 

0 
 

2 
 

90 
 

193 227 
 

50 
 

0 
 

0 
 

562 
 

0.87 
 

PIO12 with graphics 
load (30x250x8 bpp)  

 

0 
 

12 
 

81 
 

170 
 

180 
 

59 
 

7 
 

0 
 

509 
 

1.01 
 

PIO12 with network 
load 

 

0 
 

0 
 

92 
 

196 
 

230 
 

53 
 

0 
 

0 
 

571 
 

0.86 
 

Mouse  (no load) 
 

0 0 
 

3 
 

334 
 

222 
 

12 
 

0 
 

0 
 

571 
 

0.55 
 

Keyboard  (no load) 89 0 7 1 0 152 321 1 571 
 

5.15 
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Table 2 
  
Minimum and maximum response times with different input devices. 
 

 
Device Response Times Comment 

PIO12 microswitch 18-20 ms Baseline (involves 
smallest amount of 
travel) 

PIO12 KB switch 31-33 ms Longer values due 
extra 6 mm of travel 

Generic Joystick 
(also gamepad) 

28-31 ms Polled at the default 
rate (every 3 ms) 

MS Serial Mouse 
(without ball) 

44-50 ms  

MS Serial Mouse 
(with ball) 

46-52 ms  

Old AT Keyboard 40-47 ms Note variation across 
different keyboards 

OmniKey 102 KB 33-40ms  

Cheap Win95 KB 33-69ms  
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1 On some early Windows 95 systems, DirectX was not included.  DirectX can be downloaded from the 
DMASTR site or from Microsoft. 
2 Actually, on some machines there are always 998 call-backs per second, but they do not arrive at equal 
intervals of time. 
3  This limit depends on the memory of the video card. 
4 Myors (1999) used a similar procedure involving the autorepeat function of the keyboard.  This is not 
possible with DirectX, since autorepeat codes are filtered out. 
5 The SD that Myors obtains for the DOS test is nevertheless well below the value of 0.84 reported for 
DMDX in Table 1.  This is perhaps not surprising, since Myors' program was extremely simple, and was 
designed to do nothing other than time the video retrace, or the interval between keystrokes (but not both at 
the same time).  In contrast, DMDX was tested while it was carrying out both of these tasks 
simultaneously, and in addition, accessing the hard drive, and assembling the material to be displayed, not 
to mention monitoring network traffic.  It should also be noted that more recent tests running DMDX under 
Windows ME or XP on newer hardware produce SDs that are very close to Myors’  DOS values. 
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